A note on generalized companion pencils in the monomial basis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on companion pencils

Various generalizations of companion matrices to companion pencils are presented. Companion matrices link to monic polynomials, whereas companion pencils do not require monicity of the corresponding polynomial. In the classical companion pencil case (A,B) only the coefficient of the highest degree appears in B’s lower right corner. We will show, however, that all coefficients of the polynomial ...

متن کامل

Generalized Companion Matrices in the Lagrange Basis

It is well known that solving polynomial equations, or finding the eigenvalues of matrix polynomials, can be done by transforming to a generalized eigenvalue problem (see for example [10]). In this paper we examine a new way to do this directly from the values of the polynomial or matrix polynomial at distinct evaluation points.

متن کامل

Block LU factors of generalized companion matrix pencils

We present formulas for computations involving companion matrix pencils as may arise in considering polynomial eigenvalue problems. In particular, we provide explicit companion matrix pencils for matrix polynomials expressed in a variety of polynomial bases including monomial, orthogonal, Newton, Lagrange, and Bernstein/Bézier bases. Additionally, we give a pair of explicit LU factors associate...

متن کامل

A Note on the Monomial Conjecture

Several cases of the monomial conjecture are proved. An equivalent form of the direct summand conjecture is discussed. Let (A,m, k) be a noetherian local ring of dimension n, m its maximal ideal and k = A/m. The Monomial Conjecture (henceforth MC) of Hochster asserts that, given any system of parameters (henceforth s.o.p.) x1, . . . , xn of A, (x1x2 . . . xn) t−1 / ∈ (x1, . . . , xn) ∀t > 0. Ho...

متن کامل

A note on companion matrices

We show that the usual companion matrix of a polynomial of degree n can be factored into a product of n matrices, n− 1 of them being the identity matrix in which a 2 × 2 identity submatrix in two consecutive rows (and columns) is replaced by an appropriate 2 × 2 matrix, the remaining being the identity matrix with the last entry replaced by possibly different entry. By a certain similarity tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

سال: 2019

ISSN: 1578-7303,1579-1505

DOI: 10.1007/s13398-019-00760-y